当前位置:首页电脑电脑故障电脑电源工作原理 常见故障维修经验总结 (2)

电脑电源工作原理 常见故障维修经验总结 (2)

百事数码
2011-04-11 18:40 www.pc841.com 0
    二、他激式开关电源的基本原理
    220V交流电经交流滤波电路滤除外来的杂波信号,再经桥式整流和滤波电路后得到约300V的直流电,送给半桥式功率变换电路进行功率转换。功率变换电路中的开关功率管在脉冲宽度调制控制组件(TL494)输出的脉冲控制和驱动下,工作在开关状态,从而将300V直流电切换成宽度可变的高频脉冲电压。高频脉冲电压经高频变压器向外输出脉冲交流电给高频整流滤波电路,经高频整流滤波后便可得到计算机所需的各种直流电压。输出电压下降或上升时,由取样电路将取样信号送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或变窄的驱动脉冲送至两个开关功率管(如图12-2所示),使变换电路产生的高频脉冲方波也随之变宽或变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所需的电压值上。
    另外,ATX电源一般都具有保护电路,进行过压、过流保护和欠压保护,以保证计算机的安全。
任务2 掌握他激半桥式开关电源电路原理分析
    一、ATX开关电源电路组成
    1.各功能电路组成
    ATX开关电源由交流输入整流滤波电路,辅助电源电路,脉宽调制控制电路,半桥功率变换电路,PS-ON和PW-OK产生电路,自动稳压与保护控制电路,多路直流稳压输出电路等组成。
    2.直流电源额定输出
    ATX开关电源其20芯电源插头各引脚定义如图12-3所示。
    3.脉宽调制芯片TL494
    电压驱动型脉宽调制芯片TL494采用7~41V的工作电压,内部基准电压为5V,最高工作频率300kHz,可推挽/单端输出,最大输出电流为250mA。内部框图如图12-4所示,引脚功能见表12-1。
    二、ATX开关电源工作原理
    1.ATX开关电源待机状态
    1)交流输入整流滤波电路
    220V交流电经热敏电阻THR、交流保险FU;C3、C4交流滤波电路,进入由VR1至VR4二极管组成的桥式整流电路。在C5、C6串联滤波电容和R2、R3均压电阻上得到300V的直流电压,作为半桥功率变换电路及辅助电源电路的工作电压。
    热敏电阻用作开机瞬间的限流,以防烧断保险。交流滤波电路用来滤除外来的交流干扰。
    2)辅助电源电路及+5V SB输出
    300V直流电压经R72限流,向由振荡管VT15、变压器T3、定时电路C44、R74等组成的辅助电源电路供电,产生脉冲振荡。
    图中C42、R77组成VT15集电极尖峰抑制电路,当VT15集电极电流被关断时,利用C42的充电特性,抑制集电极尖峰电压的上升速率,保护VT15振荡管不被瞬时击穿。
VT15饱和期间,T3二次绕组输出端的感应电势为负,整流管VR5、VR6截止,流经一次绕组的导通电流以磁能的形式储存在T3中。当VT15由饱和转向截止时,二次绕组的感应电势为正,VR5整流输出电压供IC16三端稳压器7805,IC16输出+5V SB。若该电压丢失,主板就不能使ATX电源启动。VR6整流输出电压供待机时IC1脉宽调制芯片TL494的12脚,此时14脚输出5V基准电压,提供ATX开关电源控制电路的工作电压。  
    3)PS-ON高电平
    待机状态,ATX主板启闭控制电路的电子开关断开,IC1的14脚5V基准电压,经 R61、R62、IC10精密稳压调节器WL431控制端R、阳极A至直流地,组成PS-ON控制信号的直流分压电路,PS-ON信号为高电平(3.6V)。   
    4)PW-OK零电平
    PW-OK产生电路由IC5电压比较器LM393(双运放)的1、2、3脚,VT21、C60及其周边元件构成。IC1反相输入2脚,接由基准电压5V经R38、R37分压后的比较电压,待机时IC1同相输入1脚电位为0V,脉宽调制控制3脚为低电平。VT21导通,将IC5同相输入端3脚电位拉至低电平,小于反相输入端2脚由基准电压5V经R105和R106分压后的比较电位,输出端1脚低电位,PW-OK向主机输出零电平的电源自检信号,通知主机停止工作处于休眠待命状态。电脑百事网-WwW.PC841.Com领先的中国电脑IT技术网!
    5)停止提供+3.3V、±5V、±12V直流电源
    PS-ON信号控制IC1的4脚死区电位,ICl0控制端R与阴极K之间的控制信号呈反相调节特性,待机时PS-ON为高电平,UR高电位,UK电位下降,VT7导通。5V基准电压由VT7的 e、c极,经R100、R101加至VT20的b极。VT20导通,c极接地,经VD51钳位,将IC5的3脚输入电位拉至低电平,使PW-OK变为零电平。另一路经R80、VD25、C50、C40送人IC1的4脚,当4脚电位超过3V时,封锁8、11脚的调制脉宽输出。T2推动变压器原边绕组VT3、VT4推动管,由于导通,T2付方无感应电压。VT1、VT2开关管截止,T1开关变压器无输出,停止提供+3.3V、±5V、±12V直流电源输出。   
    2.ATX开关电源受控启动状态
    1)PS-ON零电平
    当按主机面板的电源启闭按钮,或在BIOS电源自动管理程序中设置键盘开机、定时开机、网络开机等控制方式启动ATX电源后,PS-ON控制端被计算机主板启闭控制电路的电子开关接地,PS-ON信号零电平。
    2)脉宽调制及推动电路
    PS-ON零电位导致IC10的 UR为零电位,UK电位升至5V,VT7截止,c极零电位。IC1的4脚电位由5V基准电压经R90、R40所组成的分压电路被建立在一个约0.2V的正常低电平,允许8、11脚输出相位差180°的脉宽调制控制信号,频率为IC1的5、6脚外接定时阻容元件振荡频率的一半。脉宽调制控制信号控制VT3、VT4交替工作,继而推动VT1、VT2交替工作,C5、C6通过VT1、VT2以不同方向交替作用于T1的一次绕组,二次绕组的感应电势经整流滤波形成+3.3V、±5V、±12V的输出电压。
    VD17、VD18以及C27用于抬高VT3、VT4发射极电位,用以提高VT3、VT4的截止电平。
    由于某种原因,PS-ON出现短时间的低电平,因C31两端电压不能突变,IC1的4脚出现高电平,8、11脚无驱动脉冲输出,消除ATX电源输出误动作的可能性。随着5V基准电压对C31的充电,IC1的4脚电位由PS-ON信号控制。
    3)半桥功率变换电路
    T2副边绕组、开关管VT1、VT2及其周边元件,T1原边绕组,防偏磁电容C8构成半桥功率变换电路,C8和T1原边绕组构成半桥功率变换电路的输出。当IC1的8脚输出脉宽调制信号的低电平时,VT3截止,VT4导通,此时储存在T2原边N2绕组中的能量经VD16、N2、N1、VT4进行泄放的反向电流I2,和N1绕组中的电流I1(经VD14、R54、N1、VT4形成回路),在T2副边产生的感应电压使N3绕组上负下正,N4绕组上正下负,VT1因基极反偏截止,VT2因基极正偏导通。在此期间,储存在C6电容上的150V直流电压由C6正极→C8→T1原边绕组→T2的N5绕组→VT2c、e极→C6负极形成放电回路,该回路还包括300V直流电压对C5形成的充电电流。
    流经T2的N5绕组的电流在N3、N4绕组产生的感应电压加速VT2饱和,VT1截止当IC1的11脚输出脉冲低电平的控制信号时,VT4截止,VT3导通。储存在T2原边N1绕组中的能量,经VD15、N1、N2、VT3进行泄放的反向电流I1,与N2绕组中的电流I2(经VD14、R54、N2、VT3形成回路),在T2副边绕组中产生的感应电压共同作用使N3绕组上正下负,N4绕组上负下正,VT1导通,VT2截止,300V直流电压和C5放电电流经VT1的c、e极→T2的N5绕组→T1原边绕组→C8→C6正极→C6负极,形成对C6的充电回路。流经T2的N5绕组的反向电流在N3、N4绕组产生的感应电压加速VT1饱和,VT2截止。   
    当IC1的8、11脚均输出高电平的控制信号时,VT3、VT4因基极正偏导通,流经T2原边N1、N2绕组的电流,在T2副边N3、N4绕组产生的感应电压大小相等、极性相同均为上负下正,VT1、VT2基极反偏截止,此段时间称为死区控制时间。
    C4、C10、VD3、VD4、R5至R10组成两组具有负偏压特性的基极触发电路,在正极性的脉冲电压作用期间,通过对加速电容C4或C10充电,充电电压值由VD3、R9或VD4、R10正向导通电压确定,瞬间提供很大的正向偏置基极电流,加速开关管的导通。在负极性的脉冲电压作用期间,由C4或C10的放电产生的反向电流加快开关管的关断速度。若C4经N3、R7、VT1的be极等效电阻、R5,以及C10经N4、R8、VT2的be极等效电阻、R6所形成的负极性电压放电回路的时间常数,远大于IC1输出的脉宽调制周期的话,则经过若干个重复周期,会在VT1和VT2的基极最终形成负向偏压,减小开关时间,加速电路转换。
并接在VT1、VT2开关管及VT3、VT4推动管c、e极的换向二极管VD1、VD2、VD15、VD16,在晶体管截止瞬间,既能将可能出现在集电极上的负极性反向尖峰电压旁路,保护晶体管不被反向击穿,又能将电感线圈中储存的能量进行泄放。跨接在T1原边由R4、C7组成的缓冲回路,有效地抑制出现在高频开关变压器原边绕组上的尖峰干扰脉冲。
    4)+3.3V、±5V、±12V直流稳压输出电路
    T1副边降压绕组N2感应的矩形电压脉冲,一路经肖特基二极管VD12全波整流,电感L7、L5平滑滤波,在直流负载电阻R31、R30上得到+3.3V直流电压。
    T1副边N3绕组感应的交变电压,经快恢复二极管VD6全波整流,一路经共模扼电感L1-1、电感L4、C16和R82滤波回路,输出+12V电压,ATX开关电源冷却风扇接在12V电压输出端上。另一路经快恢复二极管VD20,输出约25V直流电压,其值大于辅助电源变压器T3副边N3绕组整流输出的最大电压,ATX电源启动后,由它向IC1和T2原边绕组提供工作电压。
    N3绕组感应的交变电压,另一路由快恢复二极管VD7、VD8的负向全波整流,经共模扼流电感L1-2、电感L3,一路经三端稳压器7905输出-5V电压。另一路经C20、R14、VD9整流滤波回路,输出-12V电压。并联在N3绕组上的C13、R13尖峰吸收回路,能有效抑制当整流管截止时出现在N3绕组上的尖峰干扰脉冲。
    5)PW-OK高电平
    受控启动后IC1误差放大器的输出导致3脚控制电位上升,VT21由导通进入截止状态,e极电压由基准电压5V经R104对C60充电来建立,随着C60充电的逐渐进行,IC5同相端3脚控制电平逐渐上升,一旦大于反相端2脚的固定分压比,经正反馈迟滞比较器,在开关电源输出电压稳定后再延迟几百毫秒,1脚输出由零电平起跳到+5V高电平的PW-OK信号。
主机检测到PW-OK电源完好的信号后,进入系统初始化操作和自举启动的运行。
    若主机运行过程中遇市电掉电或用户关机时,IC1的12脚的25V输入跌落至零的时间大于ATX电源+5V输出端的电压消失时间,则IC1同相端1脚误差采样电位提前下降到小于反相端2脚的基准电位,使IC1的3脚脉宽调制控制电位下降,经R63使VT21基极电位下降,一旦VT21的e、b极电压达到0.7V时,VT21饱和导通,IC5的3脚电位迅速下降,当3脚电位小于2脚的基准电位时,IC5的1脚将立即从5V下跳至零电平。关机时PW-OK信号比ATX开关电源输出电压提前100~200ms先行消失,若硬盘正在执行读写操作,通知主机硬盘控制系统立即将磁头回退到安全着陆区,防止突然掉电时硬盘盘片被划伤损坏。
提示:支持键盘“← →”键翻页 阅读全文
返回顶部